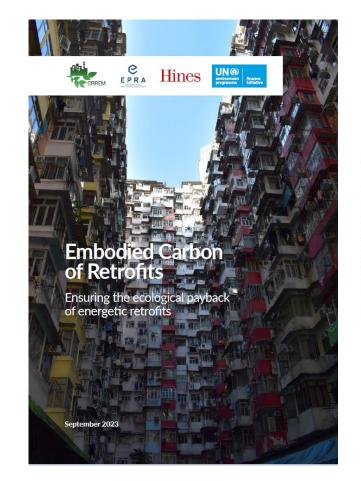


EPRA – CRREM

UN 🏵

environment programme finance initiative

Publication:


On 25th September: Whitepaper on *"Embodied Carbon of Retrofits"*

✓ The paper is being jointly published through a collaborative effort involving CRREM, EPRA, UNEP FI and Hines

Hines & EPRA

- ✓ More than 35 in-depth analyzed retrofit projects globally
- ✓ Clear guidance for data gathering and KPIs
- $\checkmark\,$ Reducing the carbon footprint by low-carbon retrofits
- ✓ First benchmarks for embodied carbon of retrofits and carbon-payback-periods

DOWNLOAD THE REPORT NOW:

https://www.crrem .eu/publications/

HASSAN SABIR, FINANCE & ESG DIRECTOR, EPRA

MAHEEN ARSHAD, CLIMATE RISK SPECIALIST, UNEP-FI

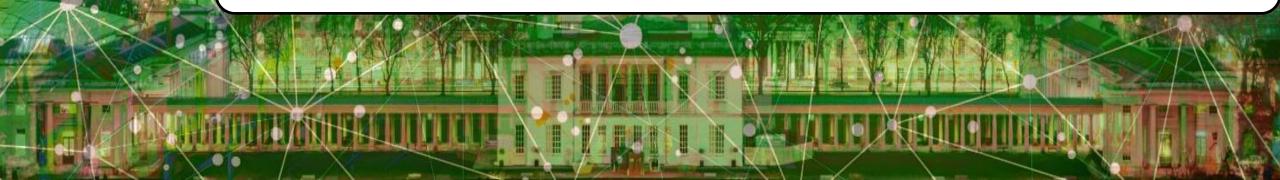
PROF. DR. SVEN BIENERT, CRREM AND UNIVERSITY OF REGENSBURG

✤ EPRA'S CONTRIBUTION TO THE WHITE PAPER HASSAN SABIR, FINANCE & ESG DIRECTOR, EPRA

* INTRODUCTION REMARKS

♦ OPENING REMARKSMAHEEN ARSHAD, UNEP-FI

WHITE PAPER CONTENT PRESENTATION PROF. DR. SVEN BIENERT, CRREM AND UNIVERSITY OF REGENSBURG



Hines & EPRA EUROPEAN PUBLIC REAL ESTATE ASSOCIATION

EMBODIED CARBON OF RETROFITS

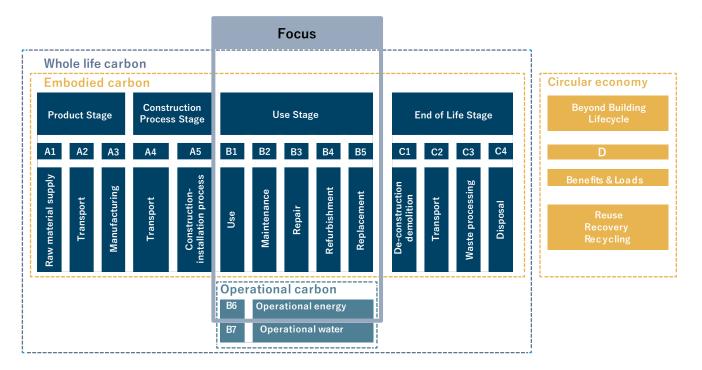
- ENSURING THE ECOLOGICAL PAYBACK OF ENERGETIC RETROFITS EXTERNAL REPORT LAUNCH WEBINAR

Prof. Dr. Sven Bienert 09/25/2023

AGENDA

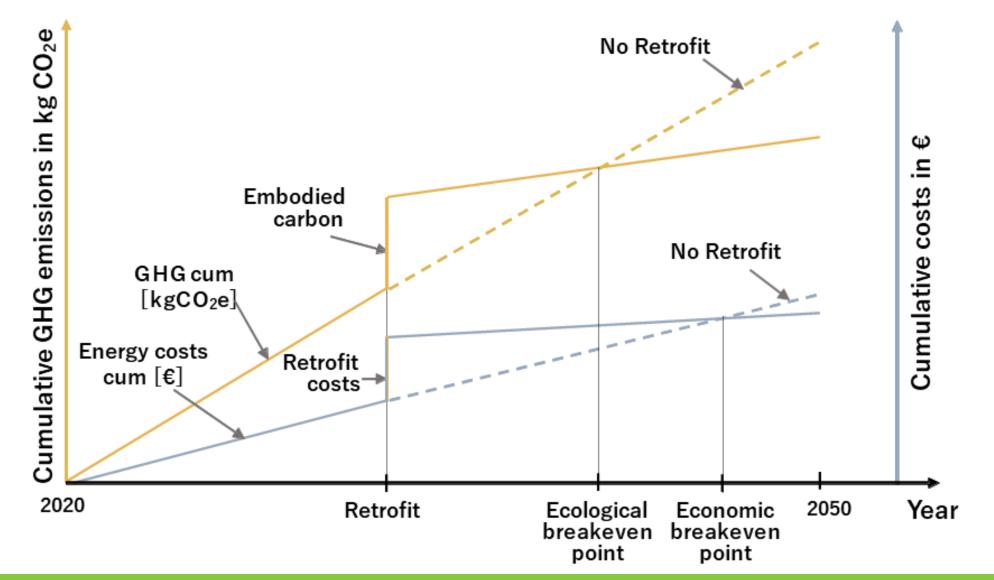
- 1. THE CHALLENGE
- 2. PROJECT OVERVIEW

3. REPORT HIGHLIGHTS


- MANAGEMENT SUMMARY AND KEY RESULTS
- DATA COLLECTION
- CASE STUDIES OF ENERGETIC RETROFITS
- BENCHMARKS FOR EMBODIED CARBON OF RETROFITS
- RECOMMENDATIONS FOR ACTION
- 4. Q&A / OPEN DISCUSSION

- Properties are a main contributor to global climate change due to their **operational and embodied GHG emissions**.
- A considerable portion of existing buildings lack the necessary energy efficiency to achieve climate-neutral building stock by 2050.
- ✤ The main objective is therefore to reduce operational emissions by 80-90% from the current global average of approximately 35 kg CO₂e/m² in 2020 to 0.4 kg CO₂e/m² in 2050 (CRREM).
- Since especially in OECD / developed countries most of the building stock that will be used in a decarbonized world in 2050 is already built today, focusing on existing properties and carrying out energetic retrofits is having a high priority to tackle climate change and avoid transition risks.
- At present investors face four strategic challenges that must be addressed as part of their decarbonization strategy - to achieve net zero buildings:
 - I. (**Reduce**) embodied carbon of new construction
 - II. (**Reduce**) operational carbon emissions of existing building stock
 - III. (Extend) the economic life of buildings
 - IV. (Optimize) energetic retrofits of buildings

IV. (Optimize) energetic retrofits of buildings


In contrast many research question with massive implication for practitioners are still a "blank spot":

- How much embodied carbon does a typical energetic retrofit emit? And how can KPIs be derived?
- Can benchmarks in kg/CO2e for energetic retrofits be derived?
- What is a typical "carbon payback" period (embodied of retrofit vs. operational savings)?
- What are good approaches for low carbon retrofits / material? How should a smart retrofit process be structured?
- Which low-hanging fruits exist? (low embodied carbon + high operational savings)

AGENDA

1. THE CHALLENGE

2. PROJECT OVERVIEW

3. REPORT HIGHLIGHTS

- MANAGEMENT SUMMARY AND KEY RESULTS
- DATA COLLECTION
- CASE STUDIES OF ENERGETIC RETROFITS
- BENCHMARKS FOR EMBODIED CARBON OF RETROFITS
- RECOMMENDATIONS FOR ACTION
- 4. Q&A / OPEN DISCUSSION

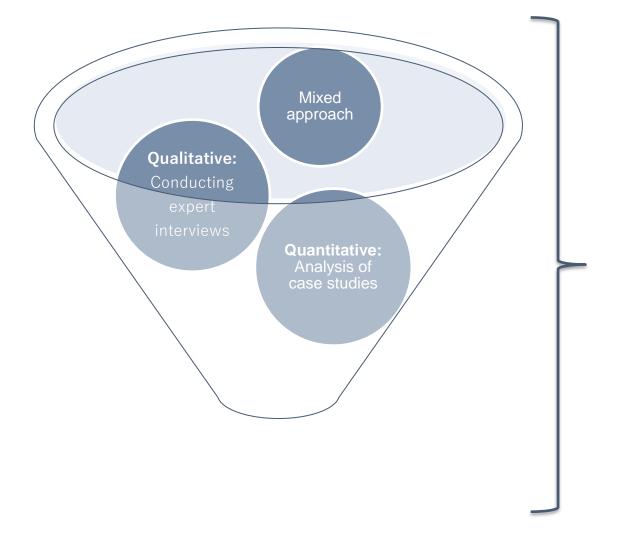
finance initiative

Authors of this report:

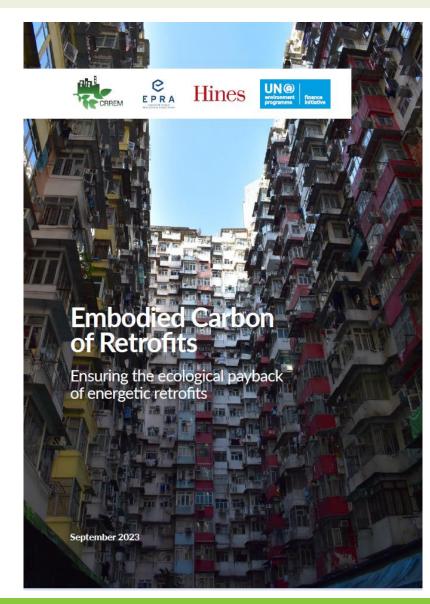
- Sven Bienert
- ✤ Hunter Kuhlwein
- Yannick Schmidt
- Berivan Agbayir
- ✤ Benedikt Gloria

PROJECT TIMELINE & COMPLETED TASKS

October 2022: Kick – off (intern)		November – December 2022: Development Date template		March 2023: Create an additional survey to capture market sentiment	I	March 2023 – July 2023 : Completion of Denchmarks and case studies // Final report (draft)		
	November 2022: Literature research		December 2022 – May 2023: Approaching 50 + companies // data collection and analysis		March 2023: Start draft of report		September 2023: Publication of the report	


Special thanks to all the companies that have provided us with data

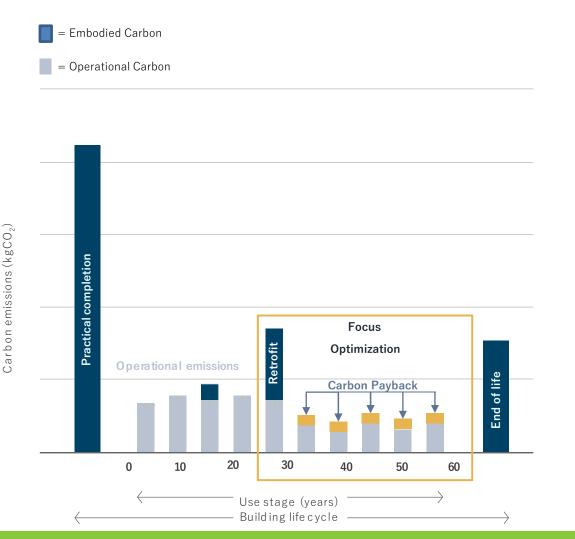
DATA COLLECTION AND METHODOLOGY


 Qualitative: Expert interviews were conducted with 50+ stakeholders. Alongside that, a survey was also carried out.

Quantitative: Out of 47 property data sets delivered, 36 case studies were analyzed and integrated in Best-practise case-studies and used to derive benchmarks.

Contents

1.	Management summary and key results	1
2.	Development and structure of the report	6
3.	Embodied carbon of energetic retrofits—ensuring ecological pay-back	9
4.	Collection of data on embodied carbon of materials	. 20
5.	Deriving benchmarks for embodied carbon of retrofits	. 27
6.	Recommendations for action	41
7.	Outlook: Growing significance of embodied carbon	. 50
Арре	endix	. 52
Refe	rences	. 59



AGENDA

- 1. THE CHALLENGE
- 2. PROJECT OVERVIEW

3. **REPORT HIGHLIGHTS**

- MANAGEMENT SUMMARY AND KEY RESULTS
- DATA COLLECTION
- CASE STUDIES OF ENERGETIC RETROFITS
- BENCHMARKS FOR EMBODIED CARBON OF RETROFITS
- RECOMMENDATIONS FOR ACTION
- 4. Q&A / OPEN DISCUSSION

HINES CEPRA

- Energetic retrofit measures in existing buildings are crucial for decarbonization strategies
- Adopting a holistic approach is essential to identify the optimal retrofit strategy for the portfolio
- The assessment process for energy-related retrofit measures is influenced by various factors, including the number, timing, and scope of retrofits
- It is not just essential to identify the "bad performing/high consuming" assets and ensure financial viability of the measures to reduce operational emissions. Since embodied carbon of retrofits add to the Scope 3 emissions of investors they also need to be reduced and optimized.

NG

rogramme

finance initiative Significant Carbon Emission Challenge related <u>to retrofits -</u> Until 2050: Global release of 30-40 Gigatons CO₂e through transforming existing buildings into Net-Zero-Ready (assuming current market practise). This represents approximately 7-9 percent of the remaining anthropogenic greenhouse gas budget (1.5degree).

HINES CEPRA

- Defining Ecological Performance Assessment and relevant KPIs - Optimization must focus on two aspects:
 - Ratio between Embodied Carbon (in kg/m²) vs. resulting operational savings (in kg/m²/a) – we introduce the new KPI "Carbon-Payback Period" (in years).
 - II. Ensuring a **low-carbon-retrofit** which could reduce embodied emission by 50 % and more compared to current market

Empirical Results and first Benchmarks:

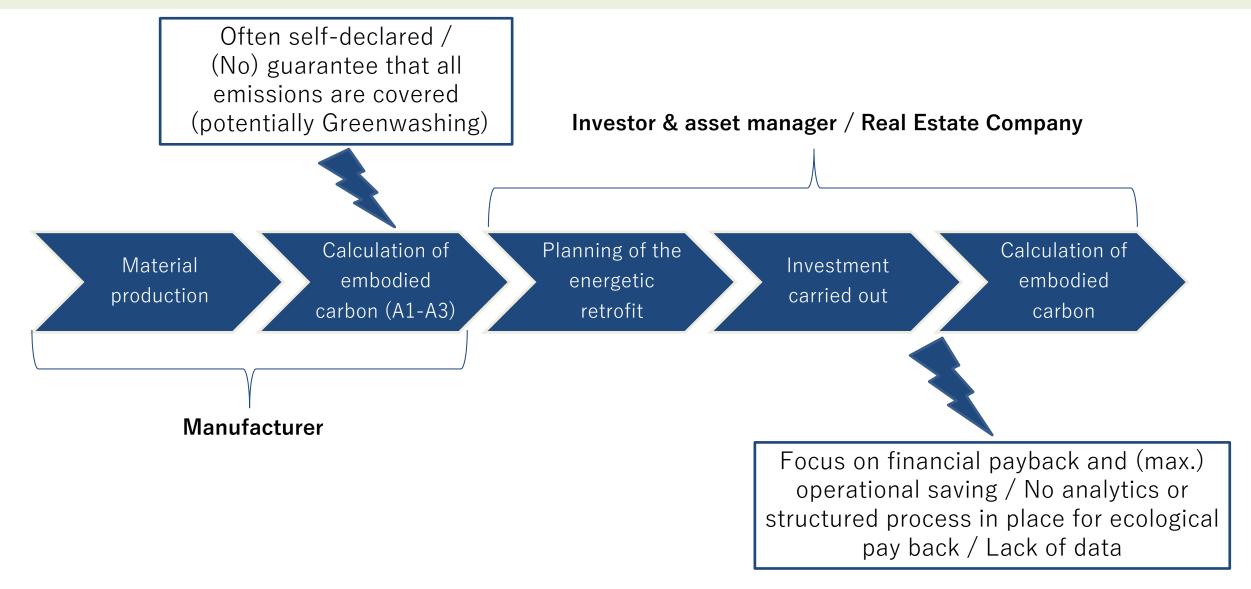
- (Deep and medium) Energetic retrofits analyzed cause embodied carbon emissions of 20-140 kg /m² (current market practise).
- Carbon payback ranges between 1 (low hanging fruits) to up to 8 years (medium and deep retrofits).
- Stakeholder Perception vs. Current Market <u>Practice:</u> Reducing/optimizing the carbon payback and embodied emission of the retrofit is so far not on the agenda of most market participants. In contrast all investors/asset managers stated this should be a focus area.
- Databases on EPDs of materials need to be expanded and data gathering as well as process of investors carrying out retrofits must be revised.

practise.

6

finance initiative

What data is needed to calculate the embodied carbon of a retrofit?


Material quantity [unit] × Carbon factor [kg CO₂e per unit material used] = Embodied Carbon [kg CO₂e] of the energetic retrofit

> Carbon payback period in years

What data is needed to calculate the impact of a retrofit?

Operational consumption **before** the measure -Operational consumption **after** the measure = Impact of the retrofit (savings of CO₂)

finance initiative

Provider of database	Name of database	Number included datasets	Geographical coverage	Life cycle stages covered	Cost	Data origin	Type of tool	Latest Update
University of Bath	ICE Database	> 200	UK	A1 – A3	Free	LCI Data, Reports, Journals, Literature	Excel- based	2019
Federal Ministry for Housing, Urban Development and Building	Ökobaudat	>1,400	Germany	A1 - D	Free	EPD, generic data	Online Application	2023
HQE-GBC Alliance	INES	> 7,000	France	A1 – A5	Free	EPD, generic data	Online Application	-
Carbon Leadership Forum / Building Transparency	EC3	> 90,000	US	A1 – A5	Free	EPD	Cloud- based	2023
Sphera	GaBi	> 15,000	EU	A1 – C4	Fee required	-	Desktop software application	-
Athena Sustainable Materials Institute	Athena Impact Estimator	> 200,000	US & Canada	A1 – C4	Free	TRACI v2.1 Database, Athena LCI Database	Desktop software application	2020
Melbourne School of Desing	Epic Database	> 850	Australia	A1 – A3	Free	EPD	Online Application	2019

Hines C EPRA

- To facilitate the assessment of embodied carbon emissions, relevant information is collected and compiled into aggregated form within commercial or governmental databases.
- Having analyzed the most relevant databases we identified some shortcomings:
 - I. <u>Variance of scope and comparability</u> of assessment between the databases.
 - II. <u>Regional coverage</u> (e.g., no valid data for many Asian markets)
 - III. <u>Missing data and limited inclusion of materials related</u> <u>to retrofits</u> (batteries, heat pumps, PV etc.),
 - IV. <u>Often lack of external validation</u>, and they are not exhaustive in terms of specific producers, regions etc. covered.
- Note that basically all available software tools are also relying in their backends on these data sources.

- Selection of materials has a significant impact. Low-carbon-materials make the difference for the energetic retrofit.
- To date most projects analyzed were carried out and calculated using "normal/typical" materials and did not put a special emphasis on low-carbon-solutions while carrying out the energetic retrofit.
- Insulation material e.g., can even work as a carbon sink with respective impacts on Scope 3 emission profile:

Conventional materials:

Material EPD label	Approx. kg CO2e (GWP) A1- A3	Unit	
Basement Ceiling insulation 4 - 16 cm	2 – 9	m²	
Facade insulation (EPS) 14 cm - 30 cm	7 - 14	m²	>
Rockwool 14 cm - 30 cm	7 – 15	m²	
LED Suspended Luminaire	21 - 36	Piece	
Photovoltaic system (1000 kWh/m²*a)	297	m²	
Air water heat pump	643	Piece	
Central fan 30000 m³/h	847	Piece	
Gas heat / power plant (500 kW)	4,150	Piece	

Low carbon materials:

	Material EPD label	Approx. kg CO2e (GWP) A1- A3	Unit	
	Straw insulation	-127	m³	Emb
	Hemp fibre insulation 10 cm	-2	m²	Embodied
	Cork panel 6 cm	-0,34	m²	
	Cork panel 1 cm	0,03	m²	Carbon (in
	Aerogel 1 cm	12	m²	(in k
<	Wood fibre insulation boards	-82	m³	kg / u
	Flexible wood fibre panels	-28	m³	unit)
	Glass wool insulation 3,4 cm	3	m²	

Insulation of the façade: Residential with a living area of 1.466 m² and a facade area of 1.514 m²

Note: The U-values of the insulation materials must be considered.

Best Case Scenario:

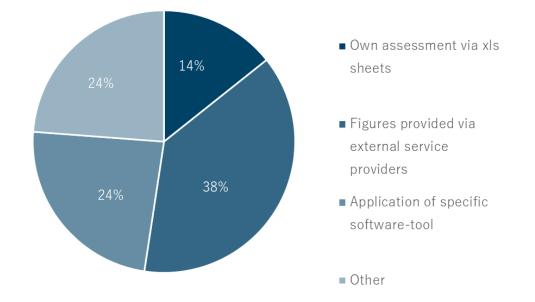
✤ Information on the masses of the materials used according to the RICS catalogue

Minimum Data requirements:

- Which measures were carried out?
- Base information about building
- ✤ kWh consumption of operation before and after retrofit

\rightarrow Almost no complete datasets available within the industry

Building	
Facade area (only required if a measure was carried out on the facade):	782,00 m²
Window quantity (only required if a measure was carried out on the window):	60
Number of heating systems (only required if a measure was carried out on the heating system):	1
Ground area (only required if a measure was carried out on the attic):	652,00 m²
tal contractions of a sease of a	189.27 0€


Measure 1	Insulation facade
Used materials	Thermal insulation composite systems
Realization of the measure	2017
Description of the measure	Installed TICS of the brand doitBAU ESP WLG031 XXm².
Totz'osts	35.0 00 €

 For the investors carrying out the energetic retrofit we find many challenges.

Hines C EPRA

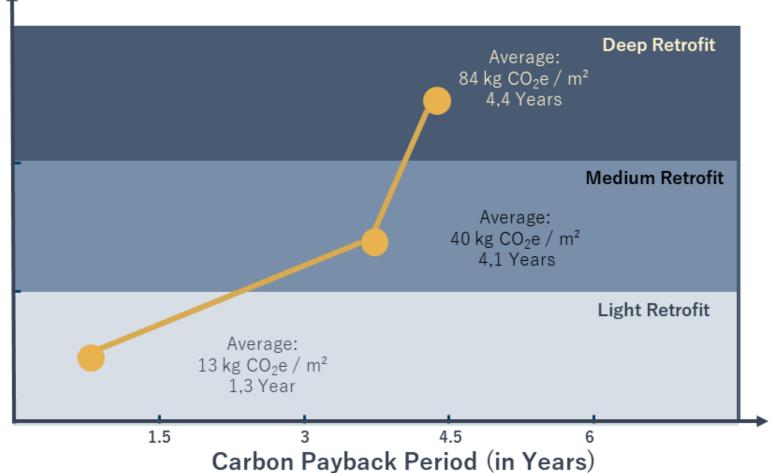
- Survey provides insights into how market participants are dealing with the data-gathering related to embodied carbon in retrofit projects.
- Most market participants are tracking so far only embodied carbon for new construction. The very few that track grey emissions for retrofits have different approaches (see chart on the right).
- Essentially no one so far was analyzing in detail the trade off between embodied and operational savings – however all stated this was essential!

- Often the savings were just based on modeled data and potential (future) EPC ratings. So, gathering more ex post real consumption data is needed.
- Separating investments in a portion of "ordinary"
 capex spending vs. what is really the energetic
 retrofit is unclear.

JN 🏵

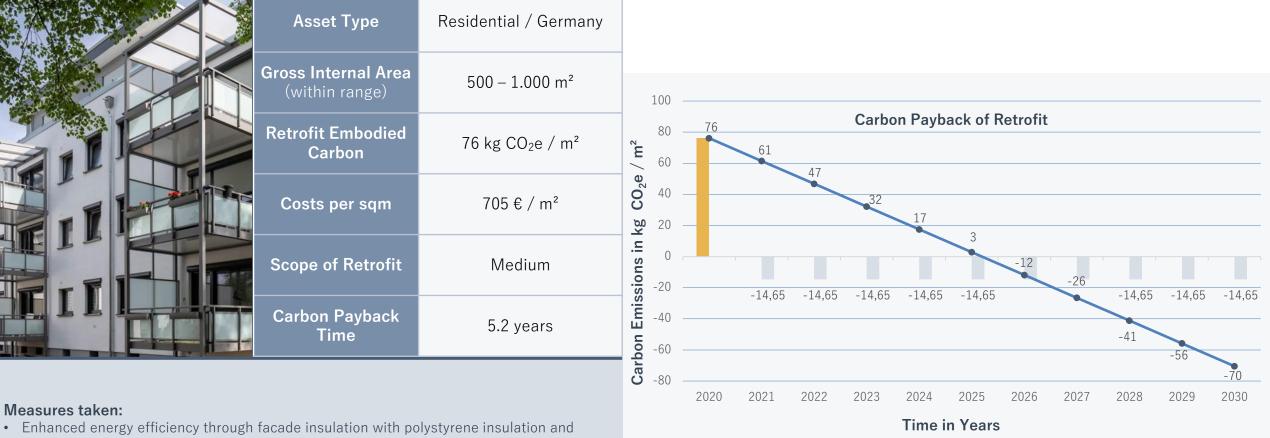
programme

finance initiative



- Average starting consumption Data:
 188 kWh/m²/a
 - ✤ 40 kg CO₂/m²/a
- Average consumption data after retrofit:
 109 kWh/m²/a
 26 kg CO₂/m²/a
- ✤ Achieved savings:

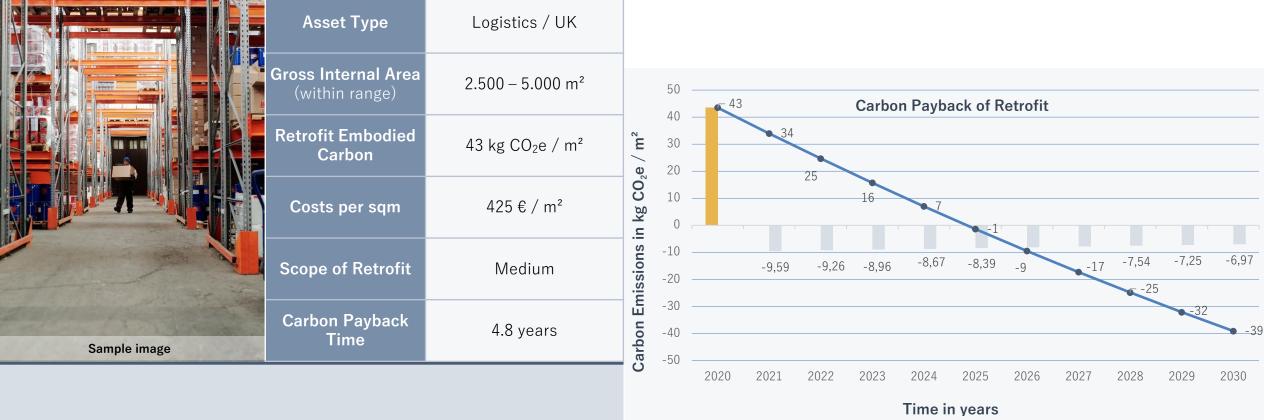
✤ Deep :


- $25 \text{ kg CO}_2/\text{m}^2/\text{a}$
- Light and Medium :
 10 kg CO₂/m²/a

finance initiative

CASE STUDY ON RESIDENTIAL - EUROPE

mortar, reducing heat loss and improving thermal performance.


- Upgraded windows to PVC frames, enhancing insulation and reducing energy consumption.
- Improved attic insulation using rockwool insulation, minimizing heat transfer and improving energy efficiency.
- Enhanced basement ceiling insulation with polystyrene insulation, preventing heat loss and improving overall energy efficiency in the building.

Embodied Carbon of Retrofit Operational Energy Savings -- Net Environmental Impact

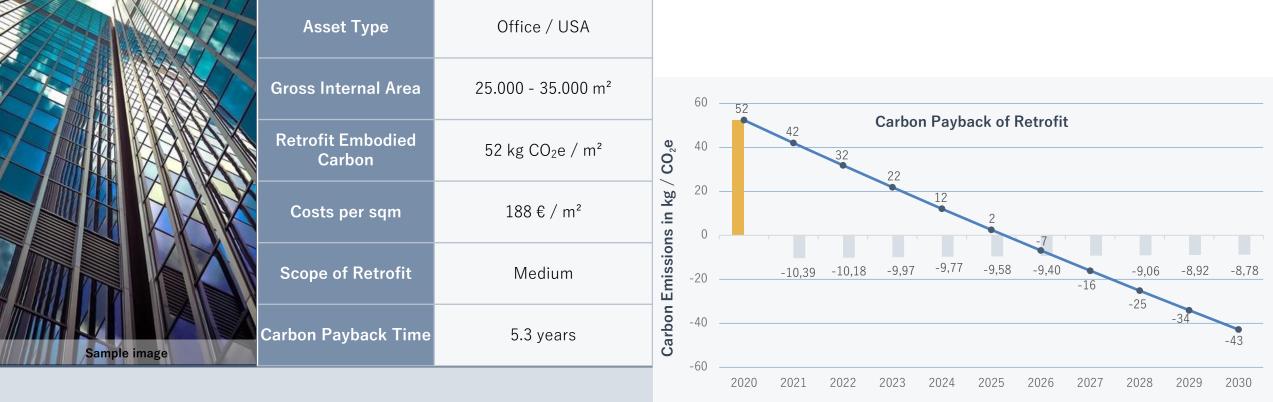
CASE STUDY ON LOGISTICS - UK

Measures taken:

Electrification of heating: Installation of air to water heat pump

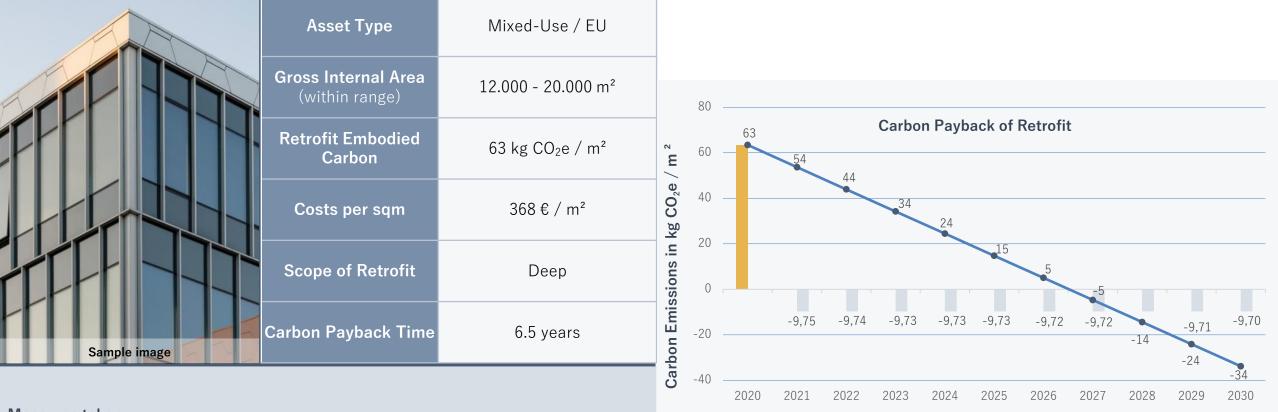
finance initiative

- Underfloor heating
- LED exchange
- Insulation of facade with stone wool insulation
- Insulation roof with glass wool insulation


Embodied Carbon of Retrofit _____ Operational Energy Savings ____Net Environmental Impact

CASE STUDY ON OFFICE - USA

Time in Years


Embodied Carbon of Retrofit — Operational Energy Savings — Net Environmental Impact

- Measures taken:
- Photovoltaic system installation (approx. 1,000 m²)
- Installation of external shading systems
- Dx Unit upgrade high efficiency, variable speed: Upgrading the direct expansion (Dx) unit to a high-efficiency model with variable speed capabilities
- Chiller Water Cooling Conversion: Conversion from air-cooled chiller systems to watercooled chiller systems
- Building integrated Photovoltaic system installation

CASE STUDY ON MIXED-USE - EUROPE

Time in Years

Embodied Carbon of Retrofit _____ Operational Energy Savings ____ Net Environmental Impact

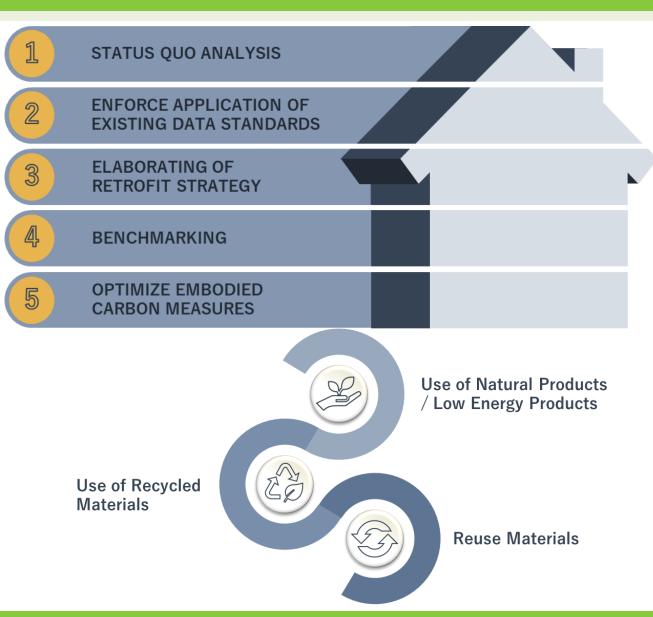
- Measures taken:
- Upgraded the lighting to energy-efficient LED fixtures
- Replaced the windows with modern, high-performance windows, improving insulation and minimizing heat loss or gain
- Installed a photovoltaic (PV) system on the building (approx. 300 m²)
- Implemented a comprehensive roof insulation measure, including a 16 cm insulation layer effectively minimizing heat transfer and optimizing energy efficiency

Typical measures

finance initiative

BENCHMARKS (CURRENT MARKET STANDARD)

Light Medium Deep Residential real estate (al estate (Mult			
 Replacement of 	Individual measures on	Measures on the entire		Light	Medium	Deep	New building ¹	
convention light bulbswith LED light bulbs.Insulation attic	the building envelope:Façade and roof insulation	building envelope:Window replacement	Savings	< 25 % of energy consumption	25 – 50 % of energy consumption	> 50 % of energy consumption	n/a	
 HVAC replacement and retro- commissioning 	 Basement insulation Replacement of windows 	 Combined bundle of HVAC, thermal envelope, and renewable power and heat supply 	Embodied carbon/m²(curre nt market practice)	n/a		r cases (g CO2e/m²	600 - 700 kg CO2e/m²	
 Other electronical measures with low risk and short payback periods 	 Remediation of thermal bridges Improved building air tightness 	 Downsizing of HVAC system due to lower heating and cooling demands 	Typical carbon payback period in years	n/a	1 up to 5 years n/a		n/a	
perious			Commercial real estate					
		 Elimination of perimeter zone conditioning 		Light	Medium	Deep	New building ¹	
		 Building envelope insulation 	Savings	< 25 % of energy consumption	25 – 50 % of energy consumption	> 50 % of energy consumption	n/a	
		• Impr		Embodied carbon/m ² (current market practice)	Up to 30 kg CO ₂ e/m²		ases up to CO ₂ e/m²	600 - 750 kg CO ₂ e/m²
			Typical carbon payback period in years	Below 3 years		8 years	n/a	


1: Le Den et al. (2022): Towards embodied carbon benchmarks for buildings in Europe

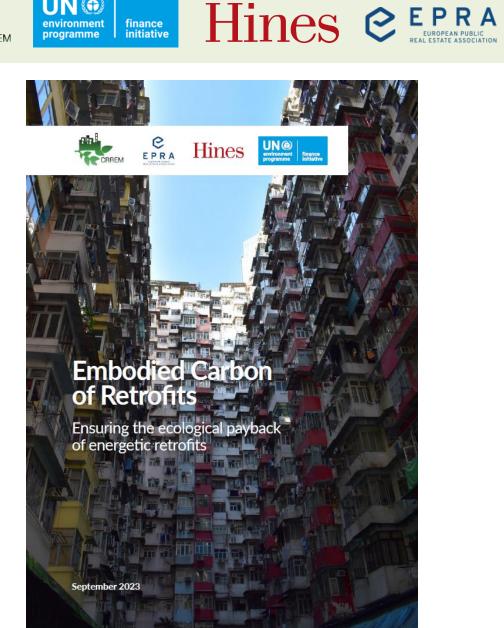
Track your Scope 3 emissions: Embodied Carbon becomes increasingly important for market participants in both – new construction and retrofits.

Hines C EPRA

- Ensure data gathering and KPIs: Handling this topic good requires the development of additional expertise and clear processes. Embodied Carbon measures will be considered as an essential KPI.
- Financial implications on the rise: The topic is gaining more and more financial significance, with increasing carbon prices. Also showcasing in sustainability reporting and to the broader financial markets that investors track this topic will be beneficial (taxonomy, banks, ESG-Investors etc.).
- Be ahead of the regulation wave: for new construction embodied limits are already becoming reality. Clearly retrofits are the next logical step.

IN G

environment programme finance initiative



AGENDA

- 1. THE CHALLENGE
- 2. PROJECT OVERVIEW
- 3. REPORT HIGHLIGHTS
 - MANAGEMENT SUMMARY AND KEY RESULTS
 - DATA COLLECTION
 - CASE STUDIES OF ENERGETIC RETROFITS
 - BENCHMARKS FOR EMBODIED CARBON OF RETROFITS
 - RECOMMENDATIONS FOR ACTION

4. Q&A / OPEN DISCUSSION

finance initiative

DOWNLOAD THE REPORT NOW:

https://www.crrem.eu/publications/

Q&A

&

OPEN DISCUSSION

WE WOULD LIKE TO THANK OUR PARTNERS FOR THE FINANCIAL SUPPORT:

PARTNERS (WHO HAVE ESPECIALLY ALSO SUPPORTED THE DEVELOPMENT & RELEASE OF THE GLOBAL PATHWAYS) :

CRREM | CARBON RISK REAL ESTATE MONITOR

info@crrem.eu <u>WWW.CRREM.EU</u> / <u>www.CRREM.ORG</u>

IIÖ INSTITUTE FOR REAL ESTATE ECONOMICS

Net-Zero building definition

finance initiative

NG

All newly constructed buildings should be net-zero buildings latest from 2030 onwards and all existing buildings should be transformed into net-zero buildings latest by 2050.

HINES CEPRA

A new or renovated net-zero building is highly energy efficient and does not cause any on-site GHG emissions from fossil fuels. It uses renewable energy, preferably generated on-site, if technically feasible, and/or off-site to fully cover its remaining, very low energy demand

Net-Zero *ready* building definition

A net-zero ready building will transform into a net-zero building latest by 2050, without any required, additional changes to the building or its equipment.

A new or renovated net-zero ready building is highly energy efficient and does not cause any on-site GHG emissions from fossil fuels. It uses renewable energy, preferably generated on-site, if technically feasible, and/or an energy supply that will be fully decarbonized latest by 2050 to fully cover its remaining, very low energy demand.